The understanding capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of image, text, and 3D point cloud by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification and zero-shot 3D classification on ModelNet40 and ScanObjectNN. ULIP also improves the performance of PointMLP by around 3% in 3D classification on ScanObjectNN, and outperforms PointCLIP by 28.8% on top-1 accuracy for zero-shot 3D classification on ModelNet40. Our code and pre-trained models will be released.
translated by 谷歌翻译
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
translated by 谷歌翻译
In this report, we focus on reconstructing clothed humans in the canonical space given multiple views and poses of a human as the input. To achieve this, we utilize the geometric prior of the SMPLX model in the canonical space to learn the implicit representation for geometry reconstruction. Based on the observation that the topology between the posed mesh and the mesh in the canonical space are consistent, we propose to learn latent codes on the posed mesh by leveraging multiple input images and then assign the latent codes to the mesh in the canonical space. Specifically, we first leverage normal and geometry networks to extract the feature vector for each vertex on the SMPLX mesh. Normal maps are adopted for better generalization to unseen images compared to 2D images. Then, features for each vertex on the posed mesh from multiple images are integrated by MLPs. The integrated features acting as the latent code are anchored to the SMPLX mesh in the canonical space. Finally, latent code for each 3D point is extracted and utilized to calculate the SDF. Our work for reconstructing the human shape on canonical pose achieves 3rd performance on WCPA MVP-Human Body Challenge.
translated by 谷歌翻译
Photonic neural networks are brain-inspired information processing technology using photons instead of electrons to perform artificial intelligence (AI) tasks. However, existing architectures are designed for a single task but fail to multiplex different tasks in parallel within a single monolithic system due to the task competition that deteriorates the model performance. This paper proposes a novel optical multi-task learning system by designing multi-wavelength diffractive deep neural networks (D2NNs) with the joint optimization method. By encoding multi-task inputs into multi-wavelength channels, the system can increase the computing throughput and significantly alle-viate the competition to perform multiple tasks in parallel with high accuracy. We design the two-task and four-task D2NNs with two and four spectral channels, respectively, for classifying different inputs from MNIST, FMNIST, KMNIST, and EMNIST databases. The numerical evaluations demonstrate that, under the same network size, mul-ti-wavelength D2NNs achieve significantly higher classification accuracies for multi-task learning than single-wavelength D2NNs. Furthermore, by increasing the network size, the multi-wavelength D2NNs for simultaneously performing multiple tasks achieve comparable classification accuracies with respect to the individual training of multiple single-wavelength D2NNs to perform tasks separately. Our work paves the way for developing the wave-length-division multiplexing technology to achieve high-throughput neuromorphic photonic computing and more general AI systems to perform multiple tasks in parallel.
translated by 谷歌翻译
Arbitrary style transfer (AST) transfers arbitrary artistic styles onto content images. Despite the recent rapid progress, existing AST methods are either incapable or too slow to run at ultra-resolutions (e.g., 4K) with limited resources, which heavily hinders their further applications. In this paper, we tackle this dilemma by learning a straightforward and lightweight model, dubbed MicroAST. The key insight is to completely abandon the use of cumbersome pre-trained Deep Convolutional Neural Networks (e.g., VGG) at inference. Instead, we design two micro encoders (content and style encoders) and one micro decoder for style transfer. The content encoder aims at extracting the main structure of the content image. The style encoder, coupled with a modulator, encodes the style image into learnable dual-modulation signals that modulate both intermediate features and convolutional filters of the decoder, thus injecting more sophisticated and flexible style signals to guide the stylizations. In addition, to boost the ability of the style encoder to extract more distinct and representative style signals, we also introduce a new style signal contrastive loss in our model. Compared to the state of the art, our MicroAST not only produces visually superior results but also is 5-73 times smaller and 6-18 times faster, for the first time enabling super-fast (about 0.5 seconds) AST at 4K ultra-resolutions. Code is available at https://github.com/EndyWon/MicroAST.
translated by 谷歌翻译
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
translated by 谷歌翻译
离线增强学习吸引了人们对解决传统强化学习的应用挑战的极大兴趣。离线增强学习使用先前收集的数据集来训练代理而无需任何互动。为了解决对OOD的高估(分布式)动作的高估,保守的估计值对所有输入都具有较低的价值。以前的保守估计方法通常很难避免OOD作用对Q值估计的影响。此外,这些算法通常需要失去一些计算效率,以实现保守估计的目的。在本文中,我们提出了一种简单的保守估计方法,即双重保守估计(DCE),该方法使用两种保守估计方法来限制政策。我们的算法引入了V功能,以避免分发作用的错误,同时隐含得出保守的估计。此外,我们的算法使用可控的罚款术语,改变了培训中保守主义的程度。从理论上讲,我们说明了该方法如何影响OOD动作和分布动作的估计。我们的实验分别表明,两种保守的估计方法影响了所有国家行动的估计。 DCE展示了D4RL的最新性能。
translated by 谷歌翻译
增加片上光子神经网络(PNN)的层数对于改善其模型性能至关重要。但是,网络隐藏层的连续级联导致更大的集成光子芯片区域。为了解决此问题,我们提出了光学神经常规微分方程(ON-ON-ON-OD-ON-OD-ON-OD-ON-OD-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ODINE),该架构用光ODE求解器参数化了隐藏层的连续动力学。 On-Ode包括PNN,然后是光子积分器和光反馈回路,可以配置为代表残留的神经网络(RESNET)和复发性神经网络,并有效地降低了芯片面积占用率。对于基于干扰的光电非线性隐藏层,数值实验表明,单个隐藏层ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ONE表示与图像分类任务中的两层光学重新系统大致相同。此外,Onode提高了基于衍射的全光线性隐藏层的模型分类精度。 On-Eod的时间依赖性动力学属性进一步应用于高精度的轨迹预测。
translated by 谷歌翻译
客户评论通常包含有关一个人在线购物体验的大量信息。尽管积极的评论对商店有益,但负面评论将在很大程度上影响消费者的决定,并可能导致销售下降。因此,仔细和有说服力地回答每个负面评论并最大程度地减少其不利影响至关重要。最近的研究考虑利用生成模型来帮助卖家做出回应。但是,此问题并不深入,因为评论可能包含问题的多个方面,这些方面应相应和有说服力地解决。在这项工作中,我们为有说服力的响应生成提出了一个多源多相关生成模型。提出的模型适当地获得和利用了各种信息来源,以产生更有信息和有说服力的响应。提出了一个多方面的细心网络,以自动参与审查中的不同方面,并确保解决大多数问题。在两个现实世界数据集上进行的广泛实验表明,我们的方法优于最先进的方法和在线测试,这证明我们的部署系统大大提高了商店处理负面评论的效率。
translated by 谷歌翻译
时间序列分类是现实世界中的重要问题。由于其非平稳属性随着时间的推移而变化,因此建立泛化模型以表现出来的分布仍然具有挑战性。在本文中,我们建议从分布的角度查看时间序列分类问题。我们认为时间复杂性归因于其中未知的潜在分布。为此,我们建议多元化学习时间序列分类的广义表示。多元化进行了一个迭代过程:它首先通过对抗训练获得了最坏情况的分布场景,然后与获得的子域的分布匹配。我们还提供了一些理论见解。我们进行有关手势识别,语音命令识别,可穿戴压力和影响检测的实验,以及基于传感器的人类活动识别,在不同的情况下总共有七个数据集。结果表明,多样化的多样化大大优于其他基线,并通过定性和定量分析有效地表征了潜在分布。
translated by 谷歌翻译